International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

LIQUORI, A. M. & VACIAGO, A. (1956). Gazz. Chim. Ital. 86, 769-782.

Acta Cryst. (1989). C45, 97-99

Crystal Studies of Heterocyclic Compounds Containing One Oxygen and Two Nitrogen Atoms. X. N,N'-Ditosyl-6,7,8,13-tetrahydrodibenz[b,g][1,4,6]oxadiazonine

By A. Stępień, U. Derewenda and M. J. Grabowski

Department of Crystallography, Institute of Chemistry, University of Łódź, Nowotki 18, 91-416 Łódź, Poland

R. GLINKA

Institute of Chemistry and Technology of Drugs, School of Medicine, Narutowicza 120a, 90-145 Łódź, Poland

AND A. THOZET

Laboratoire de Minéralogie–Cristallographie associé au CNRS (UA 805), Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne CEDEX, France

(Received 7 January 1988; accepted 20 June 1988)

Abstract. $C_{28}H_{26}N_2O_5S_2$, $M_r = 534.6$, monoclinic, $P2_1/c, a = 13.734$ (6), b = 30.818 (9), c = 13.303 (7) Å, $\beta = 110.87$ (3)°, V = 5261 (4) Å³, Z = 8, $D_x = 1.350$ (1) g cm⁻³, λ (Cu Ka) = 1.54178 Å, $\mu = 20.61$ cm⁻¹, F(000) = 2240, room temperature, R = 0.0587 for 4018 reflections with $I > 3\sigma(I)$. There are two different molecules in the asymmetric unit: molecule 1 is in an *exo,exo* modification and molecule 2 in an *exo,endo* modification. The nine-membered ring is in a quasi-chair conformation for both molecules.

Introduction. This paper is a continuation of the study of the structure-biological-activity relationship of dibenzoxadiazacycloalkanes. The title compound was obtained by reaction of the sodium salt of N-{2-{2-(ptoluenesulfonamide)methoxy]phenyl}toluenesulfonamide with methylene dibromide. The formula was confirmed by mass spectrometry and IR and NMR spectra (Glinka, 1985). The compound shows weak neuroleptic activity (Glinka, 1986).

Experimental. Light-yellow crystals from ethanol, room temperature; crystal dimensions $0.1 \times 0.2 \times 0.4$ mm. CAD-4 diffractometer using θ -2 θ scan technique; unit-cell parameters from 25 reflections in the θ range 9.0-46.3°; graphite-monochromatized Cu K α radiation; range of *h*, *k*, and *l*: 0 to 15, 0 to 37 and -15 to 15, respectively. 7199 independent reflections measured to $(\sin\theta)/\lambda = 0.63 \text{ Å}^{-1}$, data not corrected for absorption, $R_{int} = 0.0477$; standard reflection 372,

0108-2701/89/010097-03\$03.00

maximum change 2.2%. 4018 reflections with $I > 3\sigma(I)$ used in calculations. Solution by direct methods using *SHELX*76 (Sheldrick, 1976); all H atoms located from a difference map; refinement by a full-matrix leastsquares procedure on F magnitudes (875 parameters); each symmetry-independent molecule was refined in a separate block. Because of high thermal vibrations (or disorder) of atoms of the benzene rings of both tosyl groups, in last two refinement cycles constraints were applied to the geometry of these rings. Refinement to final R = 0.0587, S = 2.26, unit weights; largest peak on final difference map $0.36 \text{ e} \text{ Å}^{-3}$; ratio of max. shift/e.s.d. = 0.74; scattering factors from SHELX76.

Discussion. The final atomic coordinates are listed in Table 1,* bond lengths and angles in Table 2. A view of the molecular structure with the atomic numbering scheme is shown in Fig. 1. The geometry of the molecule was calculated using the *ORFFE3* program (Busing, Martin & Levy, 1971).

There are two different molecules in the asymmetric unit. The difference is mainly in the orientation of the tosyl groups: in molecule 1 they are oriented away from the heterocyclic ring while in molecule 2 the orientation

© 1989 International Union of Crystallography

MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

^{*} Lists of structure factors, anisotropic thermal parameters, H-atom parameters and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51166 (33 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

C26 C21 C27

of the N1 tosyl group is changed significantly: torsion angle C31-S2-N1-C14 is -74.7 (5)° for molecule 1 and 77.6 (4)° for molecule 2. It follows that the N1 C10 S1 011 tosyl group of molecule 2 is oriented towards the heterocyclic ring (see Fig. 1). Thus we observe the 012 C6 C7 exo, exo conformation in molecule 1 and the exo, endo C8 C9 C11 conformation in molecule 2. Such a conformation for molecule 2 ensures closer packing of the molecules in C12 C22 C23 C24 C25 the crystal.

The nine-membered ring is in a quasi-chair conformation in both molecules and is approximately

Table 1. Final positional $(\times 10^4)$ and equivalent isotropic thermal parameters (Å $^2\times10^4)$ with e.s.d.'s in parentheses

Asterisks indicate the atoms of molecule 1.

155.....

	$U_{eq} =$	= <u>₹</u> ∠ _i ∠ _j U _{ij} a;	$a_j \mathbf{a}_i \mathbf{a}_j$.	
	x	у	z	U_{eo}
01*	5502 (6)	1767 (2)	4819 (5)	955 (66)
N1*	7142 (5)	1283 (2)	6118 (5)	706 (58)
C5*	6920 (7)	1149 (3)	7047 (7)	621 (80)
S2*	8187 (2)	1539 (1)	6189 (2)	707 (17)
O21*	8566 (5)	1729 (2)	7244 (6)	1107 (68)
O22*	7949 (5)	1804 (2)	5255 (6)	1090 (67)
C1*	4940 (8)	1186 (4)	3519 (8)	791 (88)
C2*	5108 (9)	786 (4)	3208 (9)	898 (104)
C3*	5946 (9)	537 (4)	3798 (8)	792 (96)
C4*	6632 (8)	710 (3)	4747 (8)	716 (83)
C14*	6473 (7)	1110 (3)	5089 (6)	641 (72)
C13*	5621 (8)	1353 (3)	4472 (7)	691 (77)
C32*	9428 (7)	824 (3)	6903 (6)	807 (89)
C33*	10152 (8)	524 (3)	6826 (7)	889 (96)
C34*	10534 (7)	534 (3)	5994 (8)	813 (96)
C35*	10195 (8)	860 (4)	5218 (7)	929 (109)
C36*	9468 (8)	1161 (3)	5288 (7)	919 (103)
C31*	9094 (6)	1153 (3)	6123 (7)	750 (80)
C37*	11303 (10)	226 (4)	5937 (12)	1168 (135)
N2*	5864 (5)	1244 (2)	6937 (5)	655 (57)
C10*	4638 (9)	1804 (4)	5243 (10)	773 (102)
S1*	5053 (2)	851 (1)	6930 (2)	692 (18)
011*	5224 (5)	517 (2)	6266 (4)	757 (50)
012*	4041 (4)	1040 (2)	6672 (5)	901 (57)
C6•	5982 (9)	1828 (3)	8232 (9)	863 (101)
C7•	5770 (10)	2236 (4)	8511 (11)	968 (115)
C8*	5173 (10)	2503 (4)	7703 (12)	1010 (124)
C9*	4816 (8)	2368 (3)	6630 (11)	893 (103)
C11*	5021 (7)	1952 (3)	6324 (8)	/94 (83)
C12*	5634 (7)	1083 (3)	/19/(8)	745 (77)
C22*	5150 (7)	834 (3)	9025 (7)	794 (94) 960 (115)
C23*	5500 (8)	090 (3)	10071 (7)	820 (04)
C24*	6133 (8)	328 (3)	0554 (7)	800 (02)
C25*	6429 (7)	209 (2)	9534 (7)	713 (84)
C20*	5456 (6)	200 (J) 654 (J)	8242 (5)	632 (82)
C21*	5450 (0)	142 (5)	11427 (0)	1311 (146)
C21	0490(12)	143 (5)	11427 (9)	1311 (140)
01	855 (4)	1348 (2)	2611 (4)	761 (47)
NI	521 (4)	758 (2)	931 (4)	566 (47)
C5	988 (7)	941 (2)	203 (6)	604 (63)
S2	-704 (2)	625 (1)	532 (2)	707 (17)
021	-1099 (4)	675 (2)	-621 (4)	812 (45)
022	-764 (4)	219 (2)	1015 (5)	962 (55)
CI	2231 (6)	900 (3)	3 /95 (6)	./13 (68)
C2	2770(7)	520 (3)	3986 (7)	750 (74)
C3	2524 (7)	205 (3)	3204 (7)	120 (11)
C4	1/30(0)	214(2)	2203 (6)	040 (08) 560 (56)
C14	1237 (5)	001 (2)	2004 (5)	500 (50)
C13	1430 (0)	9/0 (2)	2802 (0)	031 (03)
C32	-1010(/)	1397 (3)	JO1 (7)	1150(124)
C33	-2091 (8)	1604 (3)	1023 (10)	1260 (124)
C34	-2294 (9)	1004 (4)	2420 (10)	1209 (140)
C33	-2010 (9)	1199 (3)	2429 (0)	1014 (104)
C30	-1318(7)	903 (3)	1991 (7)	740 (72)
C31	-1314 (0)	393 (3) 1000 (9)	2424 (16)	147 (13)
U37	-2817 (13)	1256 (2)	2434 (10)	2203 (200) 520 (<i>AA</i>)
INZ	1329 (4)	1330 (2)	008 (4)	JEY (44)

Table 1 (cont.)

x	у	Z	U_{eq}
1372 (9)	1748 (3)	2505 (8)	742 (85)
2702 (1)	1429 (1)	613 (2)	622 (14)
3123 (4)	1790 (2)	1320 (4)	750 (42)
3207 (4)	1016 (2)	840 (4)	774 (43)
319 (7)	1896 (3)	-535 (7)	769 (78)
-304 (8)	2256 (3)	-652 (10)	1010 (101)
-361 (9)	2452 (4)	247 (12)	1139 (124)
196 (8)	2297 (3)	1284 (10)	946 (101)
827 (6)	1931 (3)	1422 (7)	713 (72)
888 (6)	1738 (2)	500 (6)	637 (64)
2381 (7)	1270 (2)	-1489 (6)	713 (78)
2261 (7)	1386 (3)	2531 (6)	742 (81)
2344 (6)	1816 (3)	2790 (5)	732 (73)
2560 (8)	2129 (2)	-1986 (6)	875 (87)
2672 (7)	2014 (2)	-946 (6)	778 (79)
2600 (5)	1583 (2)	-680 (5)	582 (57)
2241 (10)	1932 (4)	-3897 (9)	1051 (121)

Table 2. Bond lengths (Å) and angles (°)

	Molecule				Molecule		
		1	2		1	2	
	C11-C12	1.431 (12)	1.391 (13)	N2-S1-O11	105.9 (4)	106-1 (3)	
	C12C6	1.361 (15)	1.406 (11)	N2-S1-012	107.5 (4)	106.5 (3)	
	$C6_{-}C7$	1.370 (17)	1.375 (14)	N2-S1-C21	106.2 (3)	107.6 (3)	
	C_{7}	1.370(17)	1.367 (21)	C21-S1-011	107.8 (4)	107.9 (3)	
	00-00	1.397 (20)	1.402 (17)	$C_{21} = S_{1} = O_{12}$	108.4 (4)	108.3 (3)	
	C9-C11	1.402 (15)	1,395 (13)	011 - 81 - 012	120.3 (4)	119.9 (3)	
,)	SIN2	1.643 (7)	1.624 (6)	S1-C21-C26	119.0 (7)	121.6 (5)	
	SI-011	1.429 (6)	1.438 (5)	SI-C21-C22	121.5 (6)	119.6 (5)	
	S1-012	1.432 (6)	1.429 (5)	C26-C21-C22	119-5 (7)	118-7 (6)	
)	S1-C21	1.742 (7)	1.741 (7)	C21C22C23	120-4 (8)	120-8 (6)	
4)	C21-C22	1.392 (14)	1.395 (10)	C22-C23-C24	119.9 (10)	120-4 (7)	
)	C22-C23	1.388 (13)	1.383 (11)	C23-C24-C25	119-8 (8)	119-1 (7)	
)	C23-C24	1.393 (14)	1-385 (11)	C24-C25-C26	120-4 (8)	120-6 (7)	
)	C24C25	1.384 (14)	1-391 (11)	C25C26C21	120-0 (8)	120-5 (6)	
)	C25-C26	1-389 (12)	1.383 (12)	C27–C24–C23	121-2 (10)	119-6 (8)	
)	C21–C26	1-394 (11)	1.388 (10)	C27–C24–C25	119.0 (10)	121-2 (8)	
)	C24–C27	1.475 (15)	1.472 (14)	SI-N2C5	120-5 (6)	119-3 (5)	
)	C5-N2	1.435 (13)	1-482 (9)	\$1-N2-C12	118-8 (7)	117.1 (5)	
9)	N2-C12	1-459 (11)	1-446 (9)	C11-C12C6	121-6 (9)	122.0 (7)	
3)	O1-C10	1-490 (18)	1.454 (12)	C12–C6–C7	122-9 (10)	119-7 (10)	
)	C10-C11	1.420 (16)	1.478 (12)	C6-C7-C8	117.6 (12)	119-1 (10)	
5)	C13-C14	1.387 (12)	1.390 (10)	C7-C8-C9	121.2 (12)	121.9 (11)	
) :	C14–C4	1.357 (14)	1.366 (11)	C8-C9-C11	122.3 (10)	120-1 (12)	
2)	C4C3	1.386 (13)	1.388 (10)	C9-C11-C12	114.5 (9)	117.3 (8)	
2	C3-C2	$1 \cdot 3 / 4 (15)$	$1 \cdot 3 / 3 (13)$	$C_0 - C_{12} - N_2$	121.1 (8)	119.0 (8)	
2		1.340 (17)	1.301 (13)		123.3 (9)	120.8 (10)	
)	CI-CI3	1.579(12)	1.393 (10)	N2 C12 C11	117.3 (7)	119.0 (6)	
1)	52-191	1 427 (9)	1.027(0)	C_{12} C_{11} C_{10}	122.2 (0)	121.0 (8)	
3) 4)	S2-021	1.425 (8)	1.423 (6)		110.5 (9)	108.7 (7)	
3)	S2-022	1.748 (9)	1.719 (9)	N2-C5-NI	111.7(7)	112.1 (6)	
<i>S)</i>	C31_C32	1.405 (14)	1.406 (13)	N1-S2-021	105-3 (5)	105.9 (3)	
Ś	$C_{32} - C_{33}$	1.388 (12)	1,400 (16)	NI-S2-022	107.9 (4)	107.2 (3)	
Ś	$C_{33} - C_{34}$	1.384 (16)	1.376 (20)	N1-S2-C31	107.4 (4)	107.3 (3)	
, 5)	C34-C35	1.397 (14)	1.396 (19)	C31-S2-O21	108-1 (4)	108.7 (3)	
)	C35-C36	1.390 (16)	1.382 (18)	C31-S2-O22	107.0 (5)	106.1 (4)	
Ś	C31-C36	1.379 (15)	1.372 (14)	O21-S2-O22	120.6 (4)	121.0 (3)	
Ś	C34-C37	1.441 (18)	1.455 (28)	S2-C31-C36	120.3 (7)	121-4 (7)	
)	C5-N1	1.435 (13)	1-452 (11)	S2-C31-C32	120.3 (8)	118-9 (7)	
6)	N1-C14	1.451 (10)	1.447 (8)	C36-C31-C32	119-4 (8)	119.7 (9)	
	O1-C13	1.386 (12)	1.379 (9)	C31-C32-C33	118-7 (9)	118-5 (9)	
)				C32-C33-C34	122-0 (8)	121-2 (10)	
)				C33-C34-C35	119-0 (9)	119.7 (12)	
)				C34-C35-C36	119.3 (10)	119-4 (12)	
)				C35-C36-C31	121-6 (8)	121.5 (10)	
)				C37-C34-C33	121.5(10)	123.0 (14)	
)				$C_3/-C_34-C_{33}$	119.5 (11)	110.7 (13)	
,				52-NI-CJ	$123 \cdot 2 (3)$ 110.2 (7)	122.0 (5)	
2				S2-NI-C14	119.2(7)	122.0 (5)	
{				C13 = C14 = C4	121.1 (9)	119.2 (7)	
{				$C_{4} - C_{3} - C_{2}$	117.7 (10)	121.0 (8)	
ζ				$C_{3}-C_{2}-C_{1}$	122.5 (9)	119.7 (7)	
Ś				$C_{2}-C_{1}-C_{13}$	119.3 (9)	120.4 (8)	
, 1)				CI_CI3_CI4	119.7 (9)	119.2 (7)	
-, 6)				C4-C14-N1	121.8 (7)	119.8 (6)	
ň				CI-C13-O1	121.9 (8)	121.4 (7)	
4)				C5-N1-C14	116.7 (7)	115-6 (6)	
Ň				N1-C14-C13	118.4 (8)	119.6 (6)	
, 8)				C14-C13-O1	118-4 (7)	119-3 (6)	
) í				C13-01-C10	113.6 (8)	116-4 (7)	
<i>:</i>					• *		

Fig. 1. Comparison of the structures of molecule 1 (bold line) and molecule 2 (fine line). The coincidence of the two molecules was obtained by fitting together the heterocyclic rings of the two molecules by least squares. The atomic numbering scheme is given for molecule 1.

symmetrical with respect to a pseudo-twofold axis running through C5 and the middle of the O1-C10 bond; the asymmetry parameters (Duax & Norton, 1975) $\Delta_2 = 23.8$ (6) and 25.0 (5)° for molecules 1 and 2, respectively. The planes of the fused benzene rings form an angle of 24.5 (3)° in 1 and 25.1 (3)° in 2. The N1 and N2 atoms show different behaviour in the two molecules. The tendency to form pyramidal bonds by the N2 atoms is more pronounced than for N1, particularly for N2 of the second molecule. The sums of the bond angles about the N atoms are: $359 \cdot 1 (11)^\circ$ for N1* and $359 \cdot 7 (9)^\circ$ for N1 and $356 \cdot 8 (12)^\circ$ for N2* and $353 \cdot 7 (9)^\circ$ for N2. The distance of N1 from the plane passing through C5, S2 and C14 is 0.082 (12) and 0.047 (14) Å, while that of N2 from the plane passing through C5, S1 and C12 is 0.156 (10) and 0.222 (12) Å, for molecules 1 and 2, respectively.

There are van der Waals molecular contacts only.

This work was supported by project R.P.II.10 from the Polish Ministry of Science and Higher Education.

References

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1971). ORFFE. Report ORNL-TM-306. Oak Ridge National Laboratory, Tennessee, USA.
- DUAX, W. L. & NORTON, D. A. (1975). Atlas of Steroid Structure, Vol. 1. New York: IFI/Plenum.
- GLINKA, R. (1985). Acta Pol. Pharm. 42, 539-544.
- GLINKA, R. (1986). Structure-Activity Relationship in Dibenzoxadiazonine systems. 9th International Conference on Medicinal Chemistry, Berlin, Federal Republic of Germany.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1989). C45, 99-101

Structure of 5-(Trifluoromethyl)-2'-deoxyuridine

By J. N. LOW AND P. TOLLIN

Department of Applied Physics, Electronics and Manufacturing Engineering, University of Dundee, Dundee DD1 4HN, Scotland

AND R. ALAN HOWIE

Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE, Scotland

(Received 31 March 1988; accepted 18 August 1988)

Abstract. $C_{10}H_{11}F_{3}N_{2}O_{5}, \quad M_{r}=296.02u,$ orthorhombic, $P2_12_12$, a = 5.618 (4), b = 23.91 (2), c =8.897 (5) Å, $U = 1195 \cdot 1 \text{ Å}^3$, Z = 4, $D_{r} =$ 1.65 Mg m⁻³, Mo K α radiation, $\lambda = 0.71069$ Å, $\mu =$ 0.15 mm^{-1} , F(000) = 608, T = 293 K. R = 0.063 for615 unique observed $[F > 5\sigma(F)]$ reflections. The molecule is anti, $\chi = -143$ (1)°. The sugar pucker is ${}_{1}^{2}T$ with $P = 161 (1)^{\circ}$ and $\psi_m = 42 (1)^{\circ}$. Atom O5' is statistically disordered so that the conformation about the C4'-C5' bond is either +sc or ap, with $\gamma = 67$ (1) and 158 (1)° respectively.

Introduction. We have determined the crystal and molecular structure of the title compound as part of our continuing program of investigation of modified nucleosides. Another crystal form of this compound has been reported by Tench (1972). This crystallized in space group $P2_1$ with cell dimensions a = 8.97, b = 5.40, c = 12.39 Å, $\beta = 97.0^{\circ}$. The cell volume, 596 Å³, is almost exactly half that of the present unit cell. No further information with regard to this structure is contained within the Cambridge Structural Database (Elder, Hull, Machin & Mills, 1981).

0108-2701/89/010099-03\$03.00

© 1989 International Union of Crystallography